壓鑄模具的結構設計會直接左右產品精度。當型腔幾何、流道長度與分模面位置依照金屬液的流動特性進行規劃時,充填路徑能保持順暢,使薄壁、尖角與細節處都能被完整成形,減少縮孔、變形與尺寸偏移。若流道阻力過高或設計不均,容易造成填不足,使成品一致性下降。
散熱配置則影響模具的效率與壽命。壓鑄過程瞬間高溫會使模具承受巨大熱負荷,若冷卻水路分布不均,模具內部將形成溫差,導致局部過熱,使成品表面出現亮紋、粗糙或流痕。完善的冷卻通道能維持模具溫度穩定,加快冷卻速度、縮短週期,同時降低熱疲勞導致的微裂,使模具能長時間保持良好性能。
表面品質則取決於型腔加工精度與表面處理方式。型腔越平整,金屬液貼附越均勻,使產品外觀更細緻。若搭配耐磨或硬化處理,模具在大量生產後仍能保持穩定表面品質,避免因磨耗造成紋路增生或外觀瑕疵。
模具保養是維持品質與效率的必須作業。排氣孔、分模面與頂出部件在長期使用後會累積積碳、金屬屑與磨耗,若未定期清潔,容易造成毛邊增多、頂出不順或散熱下降。透過週期性修磨、清潔與檢查,可讓模具保持最佳狀態,使壓鑄製程更穩定,並確保成品品質始終如一。
壓鑄是一種將熔融金屬在高壓下快速射入模具,並在短時間內完成冷卻定型的金屬加工技術。此製程需要具備良好流動性的金屬材料,例如鋁合金、鋅合金與鎂合金,因為這些材料在高溫熔融後能迅速填滿模腔,同時具備結構緻密、成形穩定的特性,非常適合進行複雜外型的量產。
壓鑄模具由固定模與活動模兩部分組成,合模時形成完整的模腔。模具內部會設計澆口、排氣槽與冷卻水路等機構,這些結構共同決定成品的品質。澆口負責將金屬液導向模腔,使流動更均勻;排氣槽協助排出模腔內殘留空氣,避免產生氣孔或填充不足;冷卻水路則維持模具的穩定溫度,使金屬凝固速度一致,提升尺寸準確度。
當金屬加熱至液態後會注入壓室,接著由高壓活塞快速推進,使金屬液以極高速度射入模具腔體。高壓射入讓金屬液能在瞬間填滿模腔,即使是薄壁結構、細小溝槽或複雜曲面,也能完整複製。金屬液在進入模具後立即與模壁接觸並開始冷卻,冷卻水路能有效帶走熱量,使金屬迅速固化,形成穩定的外型與結構。
金屬完全凝固後,模具開啟,頂出系統將壓鑄件推出。脫模後的零件通常需要修剪澆口、去除毛邊或進行基本表面處理,使外觀更精緻、尺寸更接近設計要求。壓鑄透過金屬流動性、高壓注射與模具熱控的協作,使其成為大量生產精密金屬零件的重要工法。
壓鑄製品的品質控制是確保製品符合設計要求的關鍵。生產過程中的許多因素都可能對壓鑄件的最終品質產生影響,常見的問題包括精度誤差、縮孔、氣泡與變形等。這些問題若不及時發現並處理,會對產品的結構強度和使用效果產生不良影響。了解這些問題的來源並採取合適的檢測技術進行有效管控,對於保證壓鑄件的品質至關重要。
精度是壓鑄製品最基本的品質要求之一。由於熔融金屬的流動性、模具磨損及冷卻過程中的不均勻性等因素,壓鑄件的尺寸可能會有所偏差,進而影響產品的配合性和功能性。為了進行精度檢測,三坐標測量機(CMM)被廣泛應用。該設備能夠精確測量壓鑄件的每個維度,並與設計標準進行比對,確保每個製品都能滿足精度要求。
縮孔缺陷通常出現在金屬冷卻過程中,尤其是在較厚部件中更為常見。當熔融金屬在冷卻過程中收縮時,會形成內部空洞或孔隙,這些缺陷會削弱壓鑄件的強度。X射線檢測技術是檢測縮孔的常見方法,該技術能夠穿透金屬顯示內部結構,發現隱藏的縮孔並及時修正。
氣泡問題是由熔融金屬在注入模具過程中未能完全排出空氣所引起的。這些氣泡會降低金屬的密度並削弱壓鑄件的結構強度。超聲波檢測技術被用來識別壓鑄件內部的氣泡,這項技術通過聲波的反射來檢測內部缺陷,幫助及早發現並進行修復。
變形問題通常來自於冷卻過程中的不均勻收縮。當冷卻速度不均勻時,壓鑄件的形狀可能會發生變化,影響其外觀與結構。使用紅外線熱像儀能夠有效監測冷卻過程中的溫度分佈,及早發現冷卻不均的情況,幫助防止變形問題的發生。
壓鑄以高壓將金屬液高速注入模腔,使薄壁、複雜幾何與細節紋理能在極短時間內完整成型。由於填充速度快、金屬致密度高,成品表面平滑、精度穩定,後加工需求大幅降低。成型週期極短,使壓鑄在中大批量生產中具備顯著效率,產量越大,單件成本越能有效下降。
鍛造透過外力讓金屬產生塑性流動,使材料內部組織更緊密,因此強度、韌性與抗衝擊能力非常突出。此工法多應用於需承受高負載的零件,但造型自由度有限,不適合製作複雜曲面。成型步驟較多、節奏較慢,加上設備與模具成本較高,使鍛造更適合強度導向而非大量生產。
重力鑄造依靠金屬液自然流入模具,製程設備簡單且模具壽命長,但因金屬流動性較弱,使細部呈現能力與尺寸精度不及壓鑄。冷卻與凝固時間較長,使提升產能具有一定限制。此方式常用於中大型、壁厚均勻的零件,適合中低量與成本要求穩定的應用。
加工切削利用刀具逐層移除材料,是四種工法中精度最高的方式,可達到極窄公差與優異表面品質。然而加工時間長、材料利用率低,使單件成本偏高。多用於少量製作、樣品製造,或用於壓鑄件的後續精密修整,使關鍵尺寸更為準確。
不同工法在效率、精度、產能與成本上差異明顯,使製造者能依零件特性與生產規模選擇最合適的技術。
在壓鑄製程中,鋁、鋅、鎂三種金屬因特性不同,適合製作不同用途的零件。鋁合金以輕量化與高強度著稱,密度低、結構穩定,耐腐蝕性良好,常用於汽車零件、電子散熱模組以及中大型外殼。鋁在高壓射出下流動性優異,能完整填充模具,表面光滑,兼具承重與美觀效果,適合需要結構支撐與外觀細膩的零件。
鋅合金具有極佳的流動性,適合小型精密零件,如五金配件、扣具、齒輪及電子元件。鋅熔點低,成型速度快,製程效率高,韌性與耐磨性良好,但密度較高、重量偏重,因此主要用於小型精密零件,而非追求輕量化的產品。鋅能精確呈現複雜模具細節,是精密五金與電子零件的首選。
鎂合金以超輕量化為特點,密度約為鋁的三分之二,強度重量比高,適合筆記型電腦外殼、車內結構件及運動器材等輕量化產品。鎂成型速度快,吸震性能佳,可提升產品手感與結構穩定性。耐腐蝕性略低於鋁與鋅,但透過表面處理可增強防護效果,拓展應用範圍。
鋁適合中大型承重件,鋅專注精密小零件,鎂則用於輕量化設計,每種材料依性能差異選擇,才能符合壓鑄產品的需求。