壓鑄是一種將熔融金屬在高壓下快速射入模具,使其在極短時間內凝固成形的加工方式,能打造外觀細緻、尺寸穩定的金屬零件。製程首先從材料挑選開始,常用的壓鑄金屬包含鋁合金、鋅合金與鎂合金,這些金屬在熔融後具有良好流動性,能在射入模具時迅速填滿各種複雜結構。
模具是壓鑄的重要核心,由固定模與活動模組成。模具閉合後形成完整模腔,內部會設計澆口、排氣槽與冷卻管道等結構。澆口負責引導金屬液進入模腔;排氣槽讓殘留空氣順利排出,以避免氣孔影響品質;冷卻管道能調節模具溫度,使金屬凝固過程保持一致與穩定。
當金屬被加熱至熔融狀態後,會注入壓室,再透過高壓力以高速射入模具腔體。這段高壓射入的動作讓金屬液能瞬間充滿所有細部,即使是薄壁設計、尖角結構或曲面造型,也能精準成形。金屬進入模腔後開始快速冷卻並固化,形成完整的金屬零件雛形。
凝固完成後,模具開啟,成形的零件會由頂出系統推出。產品脫模後會進行修邊、打磨或其他後加工,使外觀更完整、尺寸更穩定。壓鑄透過高速、高壓與精密模具技術的結合,使金屬零件能以高效率及高一致性的品質完成量產。
在壓鑄製程中,品質管理是確保產品達到設計要求的關鍵。壓鑄製品的品質問題通常涉及精度誤差、縮孔、氣泡和變形等,這些缺陷會直接影響產品的結構強度、外觀及功能,因此需要採取精密的檢測方法進行監控。
壓鑄件的精度是品質管理中最基本的要求之一。在壓鑄過程中,由於熔融金屬的流動性、模具磨損和溫度變化等因素,可能會導致產品尺寸或形狀上的誤差。為了確保產品精度,三坐標測量機(CMM)是常用的檢測設備。這項設備可以精確測量製品的尺寸,並與設計圖紙進行比對,及時發現偏差,從而保證產品的精度達標。
縮孔問題常出現在金屬冷卻過程中,尤其是在厚壁部件的製造中。當熔融金屬在凝固過程中收縮時,會在內部形成孔洞,這些縮孔會大大降低壓鑄件的強度和可靠性。X射線檢測技術能有效發現這些內部缺陷。X射線能穿透金屬,顯示其內部結構,從而幫助檢測人員發現縮孔並進行修正。
氣泡問題則是由於熔融金屬未能完全排出模具內的空氣所引起。這些氣泡會影響金屬的密度,從而導致製品的強度下降。超聲波檢測是一種常見的氣泡檢測方法,通過發射聲波並測量反射波,可以準確地定位內部氣泡,從而確保產品的結構穩定。
變形問題通常是由於冷卻過程中的不均勻收縮所引起。冷卻過快或不均勻會導致壓鑄件形狀的變化,影響其外觀和使用性能。為了檢測這些變形,工程師會使用紅外線熱像儀來監控冷卻過程中的溫度分佈,從而確保冷卻過程的均勻性,減少變形的風險。
壓鑄模具的結構設計會影響金屬液在高壓射入時的流動狀態,因此型腔幾何、澆口尺寸與流道佈局都需要依產品形狀與材料特性精準規劃。當流道阻力一致、流向順暢時,金屬液能均勻充填模腔,使薄壁與細節結構順利成形,降低縮孔、填不滿與變形的發生率。若流動動線不佳,容易在型腔內產生渦流或冷隔,使成品的尺寸精度與外觀穩定度下降。
散熱系統則決定模具的循環效率與耐用度。壓鑄製程中模具承受反覆高溫衝擊,若冷卻水路配置不均,模具容易形成局部過熱,使工件表面出現亮痕、粗糙面或流痕。完善的散熱管路能讓模具快速回到適當溫度,不僅提升冷卻效率,也能減緩熱疲勞,降低裂紋出現的機率,使模具壽命更長。
產品的表面品質則受到型腔加工精度影響。型腔越平滑,金屬液貼附越均勻,表面細膩度越高;若搭配耐磨或硬化處理,更能延後磨耗,使模具在大量生產後仍能維持穩定的外觀品質,不易出現粗糙或流痕。
模具保養則是確保壓鑄品質持續穩定的重要流程。排氣孔、頂出系統與分模面在長期使用後會累積積碳與金屬殘渣,若未定期清潔或修磨,可能造成頂出不順、毛邊增加或散熱能力下降。透過規律保養、檢查與必要維護,能保持模具最佳運作狀態,使壓鑄效率與品質維持在穩定水準。
鋁、鋅、鎂三種金屬在壓鑄領域中被廣泛使用,各自具備不同的特性,能滿足從結構強度到外觀精細度的多樣需求。鋁合金具有高強度與輕量化優勢,密度低但剛性良好,適合用於承載性需求中等以上的零件。鋁同時具備良好散熱與耐腐蝕能力,使其能在戶外或高溫條件下仍維持穩定性能,因此常見於車用零件、散熱組件與中大型結構零件。
鋅合金以優異的流動特性著稱,可在壓鑄過程中完整填補複雜細節,使成品表面平滑、尺寸精度高。鋅的熔點較低,成型效率佳,特別適用於小型精密零件,如五金配件、裝飾零件與機構扣具。鋅也能進行多樣化表面處理,使外觀品質更一致,更適用於高外觀要求的產品。
鎂合金則以極輕量的物理特性最具代表性,密度為三者中最低,但仍保有良好的強度重量比。其吸震特性讓產品在使用時更具穩定感,並能有效提升操作手感。鎂的成型速度快,可提升量產效率,因此廣泛應用於 3C 裝置殼體、自行車零件與車用輕量化結構。不過,鎂的耐腐蝕性較弱,需透過表面處理強化其使用壽命。
根據產品需求的重量、強度、環境耐受度與造型複雜度選擇材料,能有效提升壓鑄產品的整體品質與性能表現。
壓鑄通過高壓將金屬液注入模腔,適合製作複雜形狀和薄壁結構的零件。此工法的主要優勢在於成型速度快、精度高且表面光滑,能快速實現大批量生產。金屬液快速冷卻讓成品達到較高的致密度與穩定性,並且縮短了製造週期,因此在高產量的情況下,壓鑄能顯著降低單件成本,廣泛應用於電子產品、汽車零件等需求量大的領域。
鍛造是通過外力使金屬產生塑性變形,結構更加緻密,強度和耐衝擊性能大大提升。這種工法適用於需要高強度、耐磨損的零件,但其形狀受限,不適合製作複雜幾何形狀。鍛造的成型速度相對較慢,且模具與設備投入高,主要用於強度要求高的零件,通常在中低量生產中運用較多。
重力鑄造使用金屬液的重力流動填充模具,這種工法的最大優勢是製程簡單、成本低且模具壽命長。然而,由於金屬流動性差,精度和細節表現不如壓鑄,常見於結構簡單且壁厚均勻的中大型零件。冷卻時間較長,生產速度也較慢,產量提升受限,因此多用於中低量生產。
加工切削則是利用刀具逐層移除多餘材料,可以達到極高的尺寸精度與表面光潔度。這種方法適用於高精度零件,但生產時間長,材料浪費較多,且單件成本較高。加工切削常用於少量製作、樣品開發,或作為其他工法後的精密修整。
每種金屬加工方式根據需求的精度、產量與成本,具有不同的應用場景,選擇適合的工法能幫助企業在生產中實現最佳效益。